Evaluation Of Integrals Involving Orthogonal Polynomials:

Laguerre

Polynomial And Bessel Function Example

Alhaidari, AD

PERGAMON-ELSEVIER SCIENCE LTD, APPLIED MATHEMATICS LETTERS; pp: 38-42; Vol: 20

King Fahd University of Petroleum & Minerals

http://www.kfupm.edu.sa

Summary

Using the theory of orthogonal polynomials, their associated recursion relations and differential formulas we develop a new method for evaluating integrals that include orthogonal polynomials. The method is illustrated by obtaining the following integral result that involves the Bessel function and associated Laguerre polynomial:

\[\int_{0}^{\infty} x^v e^{-x/2} J_v(\mu x)L_n(2v)(x)\,dx = 2^v \Gamma(v + 1/2) \frac{1}{\sqrt{\pi \psi}} \sin \theta(v+1/2) C_n(v)+(1/2) (\cos \theta), \]

where \(\mu \) and \(v \) are real parameters such that \(\mu \geq 0 \) and \(v > -1/2 \), \(\cos \theta \mu = 2-1/4/\mu + 1/4 \), and \(C_n(\lambda)(x) \) is a Gegenbauer (ultraspherical) polynomial. (c) 2006 Elsevier Ltd. All rights reserved.

References:

1. ABRAMOWITZ M, 1965, HDB MATH FUNCTIONS
2. ALHAIDARI AD, 2006, J MATRIX METHOD RECE
3. ARFKEN G, 1970, MATH METHODS PHYSICI, P478
4. BRANSDEN BH, 1970, ATOMIC COLLISION THE
5. BURKE PG, 1977, POTENTIAL SCATTERING
6. CHIHARA TS, 1978, INTRO ORTHOGONAL POL
7. COURANT R, 1966, METHODS MATH PHYS, V1
8. ERDELYI A, 1953, HIGHER TRANSCENDENTA, V1
9. GELMAN S, 1969, TOPICS ATOMIC COLLIS
10. GRADSHTEYN IS, 1980, TABLES INTEGRALS SER
11. HELLER EJ, 1974, PHYS REV A, V9, P1201
12. LIBOFF RL, 1992, QUANTUM MECH
13. MAGNUS W, 1966, FORMULAS THEOREMS SP, P242
14. MERZBACHER E, 1970, QUANTUM MECH

© Copyright: King Fahd University of Petroleum & Minerals; http://www.kfupm.edu.sa
15. MESSIAH A, 1965, QUANTUM MECH, V1
16. MORSE PM, 1953, METHODS THEORETICAL, V1
17. NEWTON RG, 1966, SCATTERING THEORY WA
18. SZEGO G, 1997, ORTHOGONAL POLYNOMIA
19. TAYLOR JR, 1972, SCATTERING THEORY
20. YAMANI HA, 1975, J MATH PHYS, V16, P410

For pre-prints please write to: haidari@mailaps.org